Tutorial: Introduction of ab initio Thermodynamics and REGC
This tutorial introduces the main concepts of ab initio atomistic thermodynamics and the replicaexchange grandcanonical (REGC) scheme using FHIaims.
A temperaturepressure phase diagram describes the composition and structure of a system at thermal equilibrium and is an essential tool for understanding material properties. The well established method of ab initio atomistic thermodynamics has been highly successful in predicting surface phase diagrams in realistic \(T,p\) conditions [1, 2, 3]. While catalysis and growth are not processes that are occurring in thermal equilibrium, it is invaluable to find phases that may exist at temperature and pressure conditions of optimum catalyst performance or during growth for any meaningful analysis. Results obtained using ab initio atomistic thermodynamics, however, rely on two approximations. One is that the phase space only consists of a fixed and predetermined number of structures (handpicked by us). The other is that vibrational contributions from the adsorbates and any anharmonic effects are commonly neglected. These approximations do not always yield accurate phase diagrams, especially at high temperature and/or coverage. An unbiased sampling of the configurational and compositional space may, in contrast, reveal additional metastable structures.
To this end, we will also introduce the recently developed REGC sampling method in combination with molecular dynamics [4]. The resulting phase diagrams include all vibrational contributions, including anharmonic effects, and thus will more accurately model realistic growth \(T,p\) conditions, albeit at (much) higher computational cost.
This tutorial was a joint work by (in alphabetical order) Volker Blum, Sebastian Kokott, Konstantin Lion, and Yuanyuan Zhou.
Objectives of This Tutorial
This tutorial introduces both methods to simulate surface/cluster stability. The tutorial is structured as:
 Creating slab structures for FHIaims and how to perform Slab calculations in FHIaims. Please go to the tutorial on Slab Calculations and Surface Simulations with FHIaims.
 Surface stability with ab initio atomistic thermodynamics
 Calculating phase diagrams using REGC
Prerequisites

A sufficient understanding about the basics of running FHIaims is required. Please review our tutorial Basics of Running FHIaims tutorial if you have not yet done so and/or if you are unfamiliar with the code.

A sufficiently powerful computer. For this tutorial a laptop with at least two (physical cores) should be sufficient.

The FHIaims code distribution must be present on this computer.

A python installation with the ASE and/or pymatgen libraries. These libraries are needed for the creation of the surface structures.
The complete set of input and output files of this tutorial are available at https://gitlab.com/FHIaimsclub/tutorials/introductionofabinitiothermodynamicsandregc, which can be easily obtained by cloning this repository onto your own computer.
Useful links
The following links contain useful information and tools regarding this tutorial and FHIaims in general:
 The present gitlab repository, which contains all the documents and simulation data for this tutorial: https://gitlab.com/FHIaimsclub/tutorials/introductionofabinitiothermodynamicsandregc
 The CLIMS gitlab repository, which contains useful utilities that can be used alongside with FHIaims to facilitate input files preparation and/or output data analysis, in particular CLIMS: https://gitlab.com/FHIaimsclub/utilities
 FHIaims browserbased Graphical Interface for Materials Simulation (GIMS): https://gims.ms1p.org
References